Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Life Sci Alliance ; 3(10)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32817121

RESUMO

The advent of immune checkpoint inhibitors has represented a major boost in cancer therapy, but safety concerns are increasingly being recognized. Indeed, although beneficial at the tumor site, unlocking a safeguard mechanism of the immune response may trigger autoimmune-like effects at the periphery, thus making the safety of immune checkpoint inhibitors a research priority. Herein, we demonstrate that thymosin α1 (Tα1), an endogenous peptide with immunomodulatory activities, can protect mice from intestinal toxicity in a murine model of immune checkpoint inhibitor-induced colitis. Specifically, Tα1 efficiently prevented immune adverse pathology in the gut by promoting the indoleamine 2,3-dioxygenase (IDO) 1-dependent tolerogenic immune pathway. Notably, Tα1 did not induce IDO1 in the tumor microenvironment, but rather modulated the infiltration of T-cell subsets by inverting the ratio between CD8+ and Treg cells, an effect that may depend on Tα1 ability to regulate the differentiation and chemokine expression profile of DCs. Thus, through distinct mechanisms that are contingent upon the context, Tα1 represents a plausible candidate to improve the safety/efficacy profile of immune checkpoint inhibitors.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Timalfasina/metabolismo , Timalfasina/farmacologia , Animais , Antígeno CTLA-4/imunologia , Antígeno CTLA-4/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/metabolismo , Feminino , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/farmacologia , Tolerância Imunológica/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/metabolismo , Timalfasina/fisiologia , Timosina/metabolismo , Timosina/fisiologia
3.
Clin Infect Dis ; 71(16): 2150-2157, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32442287

RESUMO

BACKGROUND: Thymosin alpha 1 (Tα1) had been used in the treatment of viral infections as an immune response modifier for many years. However, clinical benefits and the mechanism of Tα1 treatment for COVID-19 patients are still unclear. METHODS: We retrospectively reviewed the clinical outcomes of 76 severe COVID-19 cases admitted to 2 hospitals in Wuhan, China, from December 2019 to March 2020. The thymus output in peripheral blood mononuclear cells from COVID-19 patients was measured by T-cell receptor excision circles (TRECs). The levels of T-cell exhaustion markers programmed death-1 (PD-1) and T-cell immunoglobulin and mucin domain protein 3 (Tim-3) on CD8+ T cells were detected by flow cytometry. RESULTS: Compared with the untreated group, Tα1 treatment significantly reduced the mortality of severe COVID-19 patients (11.11% vs 30.00%, P = .044). Tα1 enhanced blood T-cell numbers in COVID-19 patients with severe lymphocytopenia. Under such conditions, Tα1 also successfully restored CD8+ and CD4+ T-cell numbers in elderly patients. Meanwhile, Tα1 reduced PD-1 and Tim-3 expression on CD8+ T cells from severe COVID-19 patients compared with untreated cases. It is of note that restoration of lymphocytopenia and acute exhaustion of T cells were roughly parallel to the rise of TRECs. CONCLUSIONS: Tα1 treatment significantly reduced mortality of severe COVID-19 patients. COVID-19 patients with counts of CD8+ T cells or CD4+ T cells in circulation less than 400/µL or 650/µL, respectively, gained more benefits from Tα1. Tα1 reversed T-cell exhaustion and recovered immune reconstitution through promoting thymus output during severe acute respiratory syndrome-coronavirus 2 infection.


Assuntos
COVID-19/mortalidade , Linfopenia/metabolismo , SARS-CoV-2/patogenicidade , Timalfasina/metabolismo , Adulto , Idoso , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , COVID-19/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Timalfasina/genética , Timo/metabolismo
4.
Front Immunol ; 9: 2449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405635

RESUMO

Autocrine activation of the complement receptors C3aR and CD46 by complement activation components C3a and C3b produced through C3 cleavage by the protease cathepsin L (CTSL) during T cell stimulation is a requirement for IFN-γ production and Th1 induction in human CD4+ T cells. Thus, lack of autocrine CD46 activation, such as in CD46-deficient patients, is associated with defective Th1 responses and recurrent infections. We have identified LGMN [the gene coding for legumain, also known as asparaginyl endopeptidase (AEP)] as one of the key genes induced by CD46 co-stimulation during human CD4+ T cell activation. AEP processes and activates a range of proteins, among those α1-thymosin and CTSL, which both drive intrinsically Th1 activity-but has so far not been described to be functionally active in human T cells. Here we found that pharmacological inhibition of AEP during activation of human CD4+ T cells reduced CTSL activation and the CTSL-mediated generation of intracellular C3a. This translated into a specific reduction of IFN-γ production without affecting cell proliferation or survival. In line with these findings, CD4+ T cells isolated from Lgmn-/- mice also displayed a specific defect in IFN-γ secretion and Th1 induction. Furthermore, we did not observe a role for AEP-driven autocrine α1-thymosin activation in T cell-derived IFN-γ production. These data suggest that AEP is an "upstream" activator of the CTSL-C3-IFN-γ axis in human CD4+ T cells and hence an important supporter of human Th1 induction.


Assuntos
Catepsina L/metabolismo , Complemento C3a/imunologia , Complemento C3b/imunologia , Cisteína Endopeptidases/metabolismo , Interferon gama/metabolismo , Células Th1/imunologia , Animais , Proliferação de Células , Cisteína Endopeptidases/genética , Humanos , Interferon gama/biossíntese , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Proteína Cofatora de Membrana/metabolismo , Camundongos , Camundongos Knockout , Receptores de Complemento/metabolismo , Timalfasina/metabolismo
5.
Sci Rep ; 8(1): 12351, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120362

RESUMO

Thymosin alpha 1 (Tα1) is a biological response modifier that has been introduced into markets for treating several diseases. Given the short serum half-life of Tα1 and the rapid development of Fc fusion proteins, we used genetic engineering method to construct the recombinant plasmid to express Tα1-Fc (Fc domain of human IgG4) fusion protein. A single-factor experiment was performed with different inducers of varying concentrations for different times to get the optimal condition of induced expression. Pure proteins higher than 90.3% were obtained by using 5 mM lactose for 4 h with a final production about 160.4 mg/L. The in vivo serum half-life of Tα1-Fc is 25 h, almost 13 times longer than Tα1 in mice models. Also, the long-acting protein has a stronger activity in repairing immune injury through increasing number of lymphocytes. Tα1-Fc displayed a more effective antitumor activity in the 4T1 and B16F10 tumor xenograft models by upregulating CD86 expression, secreting IFN-γ and IL-2, and increasing the number of tumor-infiltrating CD4+ T and CD8+ T cells. Our study on the novel modified Tα1 with the Fc segment provides valuable information for the development of new immunotherapy in cancer.


Assuntos
Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Fragmentos Fc das Imunoglobulinas/imunologia , Melanoma/etiologia , Melanoma/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Timalfasina/metabolismo , Animais , Biomarcadores Tumorais , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Meia-Vida , Humanos , Hidrocortisona/sangue , Hidrocortisona/metabolismo , Hospedeiro Imunocomprometido , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/farmacologia , Imunomodulação/efeitos dos fármacos , Masculino , Melanoma/patologia , Melanoma Experimental , Camundongos , Prognóstico , Ratos , Proteínas Recombinantes de Fusão/sangue , Timalfasina/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Expert Opin Biol Ther ; 18(sup1): 33-42, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30063856

RESUMO

INTRODUCTION: Thymosins have been extracted, characterized, and identified from Thymus. The Thymosins are hormones whose therapeuric applications have seen a recent increase. The action of Thymosin α1 is based on the stimulation of the immune response with a large number of results in a variety of pathologies. The absence of a specific receptor prompted us to investigate the direct interaction with membranes, particularly those exposing phosphatidylserine thus contributing to assess the Thymosin α1's pleiotropy. AREAS COVERED: The interaction with membranes has been studied with a number of models indicating that Thymosin α1 interacts preferentially with negative regions of the membrane (SDS mixed with dodecylphosphocholine) or, better, with vesicles of dipalmitoylphosphatidylcholine with exposed phosphatidylserine. EXPERT OPINION: The study of the role of the membrane in the mechanism of action of Thymosin α1 indicated that probably the first interaction occurs at the membrane level with recognition of negative surface due to the phosphatidylserine exposure. Upon assuming a conformation, with two helices with a disordered tract in between, it diffuses on the membrane surface by lateral diffusion. Then the interaction with membrane receptor(s) causes a membrane complex to be formed, with an activation of a signalling cascade. This can be considered the basis of its pleiotropy. Differences in structuration mechamism of Thymosin ß4 was outlined.


Assuntos
Membrana Celular/metabolismo , Timalfasina/química , Timalfasina/metabolismo , Animais , Humanos , Ligação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato , Timalfasina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...